A - Sequence of Strings

Original Link


(资料图片)

题目大意

输入 N个字符串,倒序输出。

思想

签到题。

代码

#include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std;#define IOS ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr)#define re register#define fi first#define se second#define endl "\n"typedef long long LL;typedef pair PII;typedef pair PLL;const int N = 1e6 + 3;const int INF = 0x3f3f3f3f, mod = 1e9 + 7;const double eps = 1e-6, PI = acos(-1);string s[N];void solve(){    int n; cin >> n;    for(int i = 0; i < n; i ++) cin >> s[i];    for(int i = n - 1; i >= 0; i --) cout << s[i] << endl;}int main(){    IOS;    int _ = 1;    // cin >> _;    while(_ --){        solve();    }    return 0;}

B - Multi Test Cases

Original Link

题目大意

统计一组数中的奇数个数。

思想

签到题。

代码

#include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std;#define IOS ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr)#define re register#define fi first#define se second#define endl "\n"typedef long long LL;typedef pair PII;typedef pair PLL;const int N = 1e6 + 3;const int INF = 0x3f3f3f3f, mod = 1e9 + 7;const double eps = 1e-6, PI = acos(-1);void solve(){    int n; cin >> n;    int cnt = 0;    for(int i = 0; i < n; i ++){        int x; cin >> x;        if(x % 2 != 0) cnt ++;    }    cout << cnt << endl;}int main(){    IOS;    int _ = 1;    cin >> _;    while(_ --){        solve();    }    return 0;}

C - Count Connected Components

Original Link

题目大意

给定一个无向图。求连通块数量。

思想

并查集。

代码

#include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std;#define IOS ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr)#define re register#define fi first#define se second#define endl "\n"typedef long long LL;typedef pair PII;typedef pair PLL;// const int N = 1e6 + 3;const int INF = 0x3f3f3f3f, mod = 1e9 + 7;const double eps = 1e-6, PI = acos(-1);const int N = 500;int g[N]; int n, m;int cnt = 0;int find(int u){    if(g[u] != u) g[u] = find(g[u]);    return g[u];}void solve(){    cin >> n >> m;    for(int i = 1; i <= n; i ++) g[i] = i;  //初始化    for(int i = 1; i <= m; i ++){        int a, b; cin >> a >> b;        g[find(a)] = find(b);    }    for(int i = 1; i <= n; i ++){        if(g[i] == i) cnt ++;    }    cout << cnt << endl;}int main(){    IOS;    int _ = 1;    // cin >> _;    while(_ --){        solve();    }    return 0;}

D - Happy New Year 2023

Original Link

题目大意

给定一个整数 N。保证 N=p^2q,其中 p,q 均为质数且 p\ne q。求满足条件的 p,q。

思想

算术基本定理:任何一个大于1的自然数 N,如果 N 不为质数,那么 N 可以唯一分解成有限个质数的乘积 N=p_1^{a_1}\times p_2^{a_2}\dots\times p_i^{a_k},且最多只有一个大于 \sqrt{n} 的质因子。

法一

可以选择线性筛预处理素数表,然后从小到大枚举不超过 \sqrt[3]{N} 的素数判断即可。

法二

从 i=2 开始枚举因子,当枚举到 N % i == 0 时,i 必为 N 的一个因子。则 i 不是 N 的质因子 q 就是平方因子 q。当 (N / i) % i == 0 时,说明 i 为平方因子 q,否则为质因子 p。

代码

#include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std;#define IOS ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr)#define re register#define fi first#define se second#define endl "\n"typedef long long LL;typedef pair PII;typedef pair PLL;const int N = 1e6 + 3;const int INF = 0x3f3f3f3f, mod = 1e9 + 7;const double eps = 1e-6, PI = acos(-1);void solve(){    LL x; cin >> x;    for(LL i = 2; i < x ; i ++){        if(x % i == 0){            if((x / i) % i == 0) cout << i << " " << x / (i * i) << endl;            else cout << (LL)sqrtl(x / i) << " " << i << endl;            return ;        }    }}int main(){    IOS;    int _ = 1;    cin >> _;    while(_ --){        solve();    }    return 0;}

E - Count Simple Paths

Original Link

题目大意

给定一个 N 个顶点,M 条边的无向图。求从点 1 开始,简单路径(没有重复顶点的路径)的数量 K。答案取 min(K, 1\times 10^6)。

思想

图的深度优先遍历。遇到可走的路径,数量增加 1。超过 10^6 退出,

代码

#include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std;#define IOS ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr)#define re register#define fi first#define se second#define endl "\n"typedef long long LL;typedef pair PII;typedef pair PLL;const int N = 2e5 + 3;const int INF = 0x3f3f3f3f, mod = 1e9 + 7;const double eps = 1e-6, PI = acos(-1);vector g[N];bool vis[N];LL cnt = 0;void dfs(int u){    if(cnt > 1e6) return ;    vis[u] = 1;    cnt ++;    for(int i = 0; i < g[u].size(); i ++){        if(vis[g[u][i]]) continue;        vis[g[u][i]] = 1;        dfs(g[u][i]);        vis[g[u][i]] = 0;    }}void solve(){    int n, m; cin >> n >> m;    for(int i = 0; i < m; i ++){        int a, b; cin >> a >> b;        g[a].push_back(b);        g[b].push_back(a);    }    dfs(1);    cout << min(cnt, (LL)1000000) << endl;}int main(){    IOS;    int _ = 1;    // cin >> _;    while(_ --){        solve();    }    return 0;}

F - ABCBAC

Original Link

题目大意

已知一个长度为 N 的字符串 S 和一个整数 i(0\le i \le N)。定义运算 f_i(S) 链接的字符串如下: S 的前 i 个字符。 S 的翻转。 S 的最后 (N-i) 个字符。 若 S = "abc", i = 2,则 现给出某个字符串 S 的长度 N 和经过 f_i(S) 的结果。求原始字符串 S 和 i 的值。

思想

字符串哈希。枚举 i,判断 1 \sim i 和 i + N + 1 \sim 2\times N 拼接成的字符串与 i + 1 \sim N + i 翻转后的字符串是否相同即可。

代码

#include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std;#define IOS ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr)#define re register#define fi first#define se second#define endl "\n"typedef long long LL;typedef unsigned long long ULL;typedef pair PII;typedef pair PLL;// const int N = 1e6 + 3;// const int INF = 0x3f3f3f3f, mod = 1e9 + 7;const double eps = 1e-6, PI = acos(-1);const ULL N = 2e6 + 9;const int hash_cnt = 2; //哈希次数int n;string s;ULL Prime[] = {1998585857ul,23333333333ul};ULL base[] = {131, 146527, 19260817, 91815541}; // 字符集大小,进制数ULL mod[] = {1000000007, 29123,998244353,1000000009,4294967291ull}; // 模数ULL h1[N][hash_cnt], h2[N][hash_cnt], p[N][hash_cnt];//初始化哈希void initHash(ULL n, ULL cnt){    p[0][cnt] = 1;    for(int i = 1; i <= n; ++ i) p[i][cnt] = p[i - 1][cnt] * base[cnt] % mod[cnt];    for(int i = 1; i <= n; ++ i) h1[i][cnt] = (h1[i - 1][cnt] * base[cnt] % mod[cnt] + s[i]) % mod[cnt]; // 正序hash    for(int i = n; i >= 1; -- i) h2[i][cnt] = (h2[i + 1][cnt] * base[cnt] % mod[cnt] + s[i]) % mod[cnt]; // 逆序hash}//正序HASHULL getHash1(ULL id, ULL l, ULL r){    return (h1[r][id] - h1[l - 1][id] * p[r - l + 1][id] % mod[id] + mod[id]) % mod[id];}//逆序HASHULL getHash2(ULL id, ULL l, ULL r){    return (h2[l][id] - h2[r + 1][id] * p[r - l + 1][id] % mod[id] + mod[id]) % mod[id];}//判断区间正逆序是否相等,如果区间正逆序哈希值一样,则回文;bool isRe(ULL id, ULL l,ULL r){    return getHash1(id, l, r) == getHash2(id, l, r);}void solve(){    cin >> n >> s;    s = " " + s;    initHash(2 * n, 0);    for(int i = 0; i <= n; i ++ ){        ULL sum1 = ((getHash1(0, 1, i) * p[n - i][0] % mod[0] + getHash1(0, n + i + 1, 2 * n)) % mod[0]);        ULL sum2 = getHash2(0, i + 1, n + i);        if(sum1 == sum2){            string st = s.substr(i + 1, n);            reverse(st.begin(), st.end());            cout << st << endl;            cout << i << endl;            return;        }    }    cout << -1 << endl;}int main(){    IOS;    int _ = 1;    // cin >> _;    while(_ --){        solve();    }    return 0;}

推荐内容